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We have studied, using small angle neutron scattering, the flux line lattice square to hexag
symmetry transition in single crystal LusNi12xCoxd2B2C. Low Co concentrationssx , 0.1d, which
reduce the mean free path and increase the coherence length, also move the structural transit
higher fields than in the undoped system. These data, quantitatively understood within the frame
of a theory that includes nonlocal corrections to the London model due to the Fermi surf
anisotropy, can be modeled using a simple ratio of the nonlocality range to the intervortex spac
[S0031-9007(99)09186-3]

PACS numbers: 74.60.Ge, 74.60.Ec, 74.62.Dh
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Studies of the vortex lattice in the rare-earth (RE) nicke
borocarbide magnetic superconductors have uncove
many interesting and novel results. This class of superc
ductors with the generic formulasREdNi2B2C where RE­
Y, Lu, Tm, Er, Ho, and Dy comprises materials wit
moderately highTc and both antiferromagnetic and non
magnetic members [1]. New flux line lattice (FLL) physic
seen in studies of these compounds includes a square
tex lattice [2], a field-driven square to hexagonal symme
transition [3], a static disordering at high fields [4],
coupling between the underlying spin-density wave ord
and the FLL structure [5], and a field-driven rotation o
the low field, rhombic FLL [6].

The field-driven structural transitions are a particular
interesting example of new vortex physics in this syste
Qualitatively, they can be understood as being due to
anisotropy of the Fermi surface in these compounds, wh
gives rise to a slight fourfold modulation of the curren
distribution associated with the flux lines. At low mag
netic fields, when the vortices are far apart, this anisotro
matters little and one finds hexagonal vortex lattices
would be expected for cylindrical vortex lines, with a
isotropic current and field distribution. At these low field
there is still an effect of the Fermi surface anisotrop
which breaks the orientational degeneracy, locking t
FLL relative to the crystallographic directions. As th
field is increased, there is a transition where this orie
tational ordering rotates by 45± [6]. At still higher fields,
when the vortices are closer together, the anisotropy
comes more important and drives a transition from t
low field hexagonal phase to the high field, square pha
[3]. Both transitions were previously observed, but on
qualitative comparison to the detailed theory incorpora
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ing nonlocal corrections to the London model and Fer
surface anisotropy [7] could be made. This theory a
predicts that the square-hexagonal transition should dep
strongly on the electronic mean free path, and the super-
conducting coherence lengthj of the sample. Intuitively,
one can see that the shorter, is, the more isotropic the
materials are, and the higher in field one will need to
to drive the hexagonal to square transition. This pape
a report on the first quantitative experimental test of t
theory using these dependencies.

The system we have chosen to study is single cry
LusNi12xCoxd2B2C, with Co dopingsx , 0.09. Previous
studies [8] have shown that Co substitution on the Ni s
is a nonmagnetic impurity that suppressesTc by reducing
the density of statesNs0d at the Fermi level. This system
is an ideal choice for our studies for a variety of reaso
The parent compound is nonmagnetic, large single crys
can be grown, the penetration depth is sufficiently sh
so that the neutron reflectivity from the FLL is larg
which results in good signal-to-noise small-angle neutr
scattering (SANS) data and, finally, all compounds ha
a high Tc, simplifying the cryogenics. For the paren
compound withx ­ 0, Tc ­ 16.0 K, Hc2 , 90 kOe,, ,
27 nm, andr0 , 1.5 mV cm, wherer0 is the residual
resistivity. For compounds withx , 0.1, Tc andr0 are
found to scale roughly linearly with doping [8]. Fo
the highest doping reported here,x ­ 0.09, Tc ­ 9.5 K,
Hc2 ­ 22 kOe,, , 3 nm, andr0 , 14.5 mV cm.

To avoid well-known difficulties with polycrystalline
samples, only high quality single crystals were used
this study. They were grown from asNi12xCoxd2B flux,
similar to othersREdNi2B2C single crystals and describe
elsewhere [9]. Particular care was taken to have the s
© 1999 The American Physical Society
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cobalt concentration in both the flux and the polycrystallin
starting material. The samples used here were platel
with typical areas of18 70 mm2 exposed to the neu-
tron beam, thickness between 0.5–0.7 mm, and masse
141–539 mg. The range of parameters reflects the no
systematic variation in the size of the largest crystals as
function of doping. Thec axis is always perpendicular to
the platelet and for all the experiments described here,
magnetic field was applied parallel to thec axis. The data
discussed here were taken at 2.0 K after field cooling. T
Tc ’s of the large crystals required for SANS studies wer
found to correlate well with other studies of this system
[8], and thus we are confident of the cobalt concentratio
x, within 60.005.

The experiments described here were SANS stud
performed at the cold neutron guide hall of the DR3 react
at Risø National Laboratory. The incident neutrons we
applied essentially parallel to both thec axis of the crystal
and the magnetic field. The neutrons had a wavelengthln

between 5.4 and 15.3 Å, a wavelength spreadDlnyln ,
18%, and angular divergences between 0.095± and,0.15±

FWHM depending on sample size and neutron collimatio
An area detector at the end of a 6-m evacuated cham
counted the neutrons, which were Bragg scattered fro
the magnetic field pattern in the sample due to the FL
Because of the high quality of the samples, the rockin
curve widths tended to be small, typically a few tenth
of a degree, and in most cases less than the scatte
angle. Since this study focused on the symmetry of t
FLL, rather than absolute measurements of the form fact
which determines the integrated intensity of the Brag
peaks, the data were principally taken by summing tw
dimensional diffraction patterns with the cryostat at th
locations of the first order FLL Bragg peaks.

The rocking curves were also studied as both a functi
of applied field and doping. Careful studies forx ­ 0.045
and sparser data at other dopings revealed no changes in
rocking curves for the doped samples. This indicates th
the longitudinal correlation lengths [3,4] for the undope
and lightly doped samples were quite similar and that th
doping did not disorder the lattice in any measurable wa
We conclude from this that the dopants do not act as stro
pinning centers for the FLL in this system.

In the pure system, withx ­ 0, the onset of the square
to hexagonal transition was previously found to occur
the 0.75–1.25 kOe range. What one sees experimenta
[3] is that at high fields, one has four sharp, well-define
s1, 0d first order FLL Bragg peaks and four weakers1, 1d
second order peaks. As the field is reduced and the squa
to-hexagonal transition is approached, the fours1, 0d peaks
each split in the azimuthal direction and move out slight
in reciprocal space position normalized toH1y2, while the
four s1, 1d peaks show a reduction in normalized peak po
sition. These combined motions produce the twelve fir
order FLL Bragg peaks associated with two hexagonal la
tices, which are separated in two domains, rotated by 9±.
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The change in magnitude of the reciprocal space posit
is a simple manifestation of the 7% more efficient packi
of the hexagonal lattice relative to the square lattice.

Shown in Fig. 1 is an example of our raw data for
doped sample withx ­ 0.045, at a temperature of 2.0 K
and for two applied fields, 10 kOe and 4 kOe. The ma
results of this paper are evident in this data. In the 10 k
data one can see the Bragg scattering pattern from a w
defined square lattice with four sharp first orders1, 0d FLL
Bragg peaks. In the 4 kOe data, the FLL is well into th
transition region as thes1, 0d peaks are already split by
,16±. Clearly, in qualitative agreement with the theore
cal prediction, a doping ofx ­ 0.045 has moved the tran-
sition to significantly above the pure system value.

To make a quantitative comparison with theory, w
have looked at the azimuthal distribution of the scatter

FIG. 1(color). Shown are two FLL diffraction patterns fo
LusNi .955Co.045d2B2C at T ­ 2.0 K. In the top panel, atH ­
10 kOe, the FLL is square, as is evident from the four brig
s1, 0d first order FLL Bragg peaks. Weak scattering nearq ­ 0
due to defects in the crystal, unrelated to the FLL, has be
subtracted off. As the field is lowered to 4 kOe, thes1, 0d
peaks begin to split as shown in the lower panel. Fits to
azimuthal intensity distribution give a splitting of 16± for this
field.
4083
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intensity. At each field, the data were analyzed in rec
rocal space as a function of angle for a constant mag
tude of the scattering vector,q ­ 2psByf0d1y2. For a
square FLL, the azimuthal intensity distribution has fo
peaks spaced by 90±. As the field is lowered through the
transition, each of the four peaks splits, with the magn
tude of the splitting eventually going to 30± when the FLL
transforms into two hexagonal domains. Observing t
onset of continuous symmetry transitions is inherently d
ficult as the first signature of the splitting is an azimuth
broadening comparable with both the experimental re
lution and the intrinsic width due to lattice imperfections
In general, the azimuthal splitting was only directly ob
servable when it was above 10±. However, insight into
the details of the onset of the symmetry transformati
can be obtained by looking at the azimuthal broadenin
To study the nature of the symmetry transition, two di
ferent measurement schemes were used. When the
was clearly resolved, the measurements were perform
at constant neutron wavelength. When the split could n
be resolved, measurements of the azimuthal width w
performed in order to keep the experimental resoluti
functions constant. This was done by changing the wa
length and the applied field in concert to keep the scatter
angle,2u ­ qlny2p, constant. In this way the widths a
different fields can be compared directly, and the onset
the transition is equivalent to the onset of the azimuth
broadening.

Shown in Fig. 2 are examples of these two types of da
for x ­ 0.015, 0.045, 0.06, and 0.09. At high fields, th

FIG. 2. This plot shows the azimuthal splitting described
Fig. 1 for the different fields and Co dopings of this stud
The data are indicated as follows:x ­ 0.015 by diamonds,
x ­ 0.045 by triangles,x ­ 0.06 by squares, andx ­ 0.09 by
circles. The two different types of experiment give the differe
ordinates for splitting (solid and partially filled symbols) an
width (open symbols), which have been adjusted to overla
The lines are linear fits, pinned to agree with the know
isotropic hexagonal lattice at low fields (corresponding to 3±

splitting in this notation). Also shown in the inset is a fit t
the square root field dependence, predicted to be valid near
transition forx ­ 0.06 Co doping.
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azimuthal width is field independent. At a specific, dopin
dependent field, it begins to increase. Data derived fr
this width are shown by the open symbols in Fig. 2, a
scaled by the right-hand ordinate. Well below where t
transition begins, we are able to resolve the peak splitt
instead of just broadening, which data are shown by
filled and centered points in Fig. 2, and scaled by the l
hand ordinate. The two ordinates in Fig. 2 are calibra
using the data in the regime of overlap. At very lo
fields, preliminary decoration experiments have shown
expected undistorted hexagonal lattice.

In examining the data, a number of points become cle
For increased doping, the transition clearly moves to hig
fields. Secondly, a linear extrapolation of the split data
the high field asymptote, as shown by the lines in Fig.
gives a value of the “transition” which agrees within me
surement errors with a value obtained by calling the tran
tion the field where the width just begins to increase. Ne
the transition, the mean field theory predicts a square r
singularity in the splitting,DQ ­ Q0f1 2 HyHtransg1y2.
Shown in the inset to Fig. 2 is an example of such a fit f
x ­ 0.06 usingQ0 ­ 24± andHtrans ­ 13.5 kOe, which
also is in good agreement with the theory, although bo
the width of the region over which the fit should work an
how to compare the prefactorQ0 to theory are still open
questions. Fitting all the data to the square root singul
ity causes only small (,1.5 kOe) shifts in the definition
of the transition field, which do not affect the discussio
below. Finally, it is clear that one can move the transiti
field high enough that one can study the entire region w
SANS alone. This is a significant experimental advanta
In the original work where the square to hexagonal tran
tion was first seen [3], the field at which it occurred was
an awkward value, too high for magnetic decoration a
too low for SANS. Doping can clearly move the transitio
to at least203 higher in field which will make the entire
transition much more accessible to a number of techniq
including both SANS and STM [2,10].

The transition field,Htrans, can be calculated numeri
cally within the London model corrected for nonlocalit
[7]. Physically, the structural phase transition atHtrans oc-
curs when the energy associated with nonlocal correcti
to the field distribution becomes comparable to the sh
energy of the FLL. Qualitatively, the transition happe
when the nonlocality rangersT , ,d becomes a certain
fraction of the intervortex spacinga0, r ­ Ca0, with C
a constant. ThenHtrans ­ f0ya2

0 ­ C2f0yr2. Empiri-
cally we find C ­ 0.065, which is reminiscent of the
Lindemann criterion, which states that the FLL meltin
transition occurs when the thermal vibrations are a fract
of the intervortex spacing [11]. The nonlocality rang
can be expressed [7] asr , j0fgsT , ,dy2g1y2. In this
expressionj0 is the BCS, zero temperature coheren
length and the temperature and mean-free path depen
factor g can, in general, be evaluated only numerical
However, at the low reduced temperatures of interest h
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FIG. 3. Shown are the transition fields versus doping usin
linear extrapolationsssd, square rootshd fits, and from theory
using the transport datas1d.

the zero temperature analytic result forg is available. Al-
though the exact result is cumbersome, thisT ­ 0 result
can be approximated quite accurately by the polynomi
gs0, ,d21 ­ 3f1 1 1.66sj0y,d 1 0.581sj0y,d2gy2, valid
for j0y, , 11 which covers all dopings exceptx ­ 0.09.
This yields Htrans ­ s3f0C2yj

2
0d f1 1 1.66sj0y,d 1

0.581sj0y,d2g.
Shown in Fig. 3 is a summary of our doping data

Shown by the open symbols are the transition fields, tak
from linear ssd and square rootshd fits to the splitting
versus field as a function of Co concentration. For com
parison, we have also plotted the predictions of the theo
outlined above. The values ofj0y, were obtained for our
samples using the resistivity and transition temperatureTc

for each doping [8]. For our samples we findj0y, is
equal to 1.1, 3.3, 7.8, 11, and 17 forx ­ 0, 0.015, 0.045,
0.06, and 0.90. More extensive tabulated results are giv
in [8]. Using the formula forHtrans, the theoretical points
in Fig. 3 were calculated. Clearly, the agreement betwe
data and theory is excellent. Also clear is that we hav
captured the important range of doping, as the extrap
lated square-hexagonal transition field forx ­ 0.09 al-
ready is in the nonphysical regime aboveHc2.

In conclusion, we have presented the results of a sy
tematic study of the doping dependence of the square
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hexagonal FLL structural phase transition in crystals o
LusNi12xCoxd2B2C. Our data show that as the doping
increases, the mean-free path, decreases and the coher
ence lengthj grows, and the transition moves to signifi-
cantly higher fields. Our results agree quantitatively wit
the theoretical predictions, although detailed compariso
to the square root field dependence near the transition
mains an open question. We believe that this new effe
in addition to validating our understanding of the micro
scopic origins of the square to hexagonal FLL structur
phase transition, also gives us an important new tool wi
which to manipulate the transition and move it into othe
more accessible experimental regimes.
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